MTH 310.003 Fall 2018

Final Exercise Solutions

1. Consider the field Z,7 = Z/(17).

(a)

Find the reciprocals 171,271 ... 167! € Zy;.

We find the reciprocal of any [a] # [0] in Z, by writing as+pt = 1,
then taking [a]™' = [s]. For example, for 47!, we do the Euclidean
Algorithm for a =6, p = 17:

17=6(2) +5 | 5=17—6(2)
6=5(1)+1 | 1=6—5(1)
=6— (17— 6(2))(1)
=6(3) +17(—1)

Thus 6(3) 4+ 17(—1) = 1 = ged(6, 17); we knew 1 would be the ged
since 0 < 6 < 17 and 17 has no proper divisors except 1, so the
only common divisor is 1. Finally [6][3] = [1] € Zi7, [6]7! = [3].
Once we are comfortable remembering that all numbers are mod
17, we can drop the [ ] notation and just write 67 = 3 € Z;7. We
compute inverse pairs:

11,249 36,413, 5+ 7.

We can deduce the rest from these by taking negatives on both
sides, for example 15 = -2 <> -9 =8:

16 <+ 16, 15 < 8, 14 « 11, 12 < 10.

The squares of the elements of Zq; are:
1,4,9,16,8,2,15,13,13,15,2,8,16,9,4, 1.

The symmetry comes from the fact that [17—a|?* = [—a)* = [a]*.

The quadratic formula is valid in any field (or even commutative
ring), so long as its features make sense: we need field elements
corresponding to o~ = (2a)~* and v/b? — dac. Here we get:

v = 2( — 1))
— (— 41\/’)_13( 4+5)=13or 2

H\—/

Here we use that 4! = 13 and 5% = 8 so /8 = +5.



2. We construct a field K with 8 elements

(a)

There 23 = 8 degree 3 polynomials in Z[z]. For degree < 3, any
non-trivial factorization must include a linear factor, and a linear
factor is equivalent to a root, so the irreducible p(z) are those with
no root in Zy: p(z) = 23+ + 1 and 23 + 2% + 1. Let us take the
first of these:

p(r) =2+ +1.

We construct K = Zy[z]/(x3>+x+1). The division algorithm will
cut down any class [f(x)] = [q(z)p(x )—i— r(z)] = [r(x)], where
degr(z) < degp(x) = 3, i.e. r(z) = ax®+bxr+c, and these are the
standard forms of elements. In compact notation we write ()
for [r(z)], so the 8 distinct elements of K are:

K =1{0,1, a, a+1, o?, o*+1, a*+a, o*+a+1}.

Here o = [x] satisfies p(a) = a®* + a+1 =0 € K, since p(a) =
p([z]) = [p(x)] = [0]

In pefect analogy to #1(a), we find the reciprocal of any f(a) =
[f(z)] # [0] by writing f(z)s(xz)+p(x)t(z) = 1, then taking ﬁ =
[f(@)]™ = [s(z)] = s().

For example, to get —— — = [#*+2+1]7", we do the Euclidean
Algorithm for f(z) = 2?+2+1 and p(z) = *4+2+1:

p(x) = f(z)(z+1) + =
flx)=x(z+1) +1

p(x) = f(z)(z+1)
f (

x) — x(z+1)

(x)
f(@) = (p(x)—f(2)(x+1)) (z+1)
f(x)z* + p(x)(z+1).

(Use =1 =1, 2 = 0 in Zy.) Thus f(z)s(z) + p(z)t(z) = 1 =
ged(f(x),p(x)); we knew 1 would be the ged since p(z) is irre-
ducible, and the only common divisors are constants ¢ # 0. In
general, the Euclidean Algorithm gives f(z)s(z) + p(x)t(z) = ¢,
so we divide: f(z) s(z) + p(x) 2t(z) = 1.

Finally we have [f(z)][s(z)] = [#*+z+1][z?] = [1] € K, and
[ +a+1]7! = [27], or ey = A®

Further, we have a®+a+1 = 0, so 1 = a®+a = a(a?+1). Also
the remaining two elements must be inverses:

11, aa’+l1, o < a’+a+l, a+l < o*+a.



(c) We know that y = «, a? are roots of p(y), since p(a) = 0 by the
construction of K, and

pla?) = a®+a?+1=(?)?+a?+1
= (a+1)?+a?+1=(a’+1)+a®>+1=0.

Dividing (y — «) into p(y), we get p(y) = (y — ) (y* +ay +a®+1).
Then dividing (y — o?) into the second factor, we get the full
factorization:

py) =y’ +y+1=(y—a)y—a®)(y — (&’+a)).

It is a general fact that if K is an extension field of Z,, and
f(y) € Z,[y] has a root § € K, then P € K is also a root of
f(y). Thus, for the above case, the initial root « of p(y) leads to
the other two roots o and (a?)? = o*+a.

3. We have a real number « such that a® + a + 1 = 0, and the ring

K = Qo] = {f(a) for all f(z) € Q[z]}.

(a) The mapping ¢ : Q[z] — K given by ¢(f(z)) = f(«) is a ho-
momorphism since it respects addition, ¢(f(z) + g(x)) = f(a) +
g(a) = é(f(x)) + ¢(g(x)), and similarly for multiplication. The
mapping is surjective since clearly all elements f(a) € K are hit.

The kernel is the set of inputs with output zero:

Ker(6) = {f(x) € Qle] s.t. 6(f(x)) = f(a) = 0}.

Like the kernel of any homomorphism, Ker(¢) C Q|z] is an ideal.
Now, by definition of «, it is a root of p(x) = 2 + z + 1, so
o(p(x)) = p(a) = 0 and p(x) € Ker(¢). Further, Ker(¢) is an ideal
of Q[x], so by the sucking-in property we have p(z)q(x) € Ker(¢)
for any ¢(x); indeed, ¢(p(x)q(x)) = p(a)g(a) = 0.

Therefore we have the principal ideal:

(p(z)) = {p(x)q(z) for ¢(z) € Q[z]} C Ker(¢).

Now, p(z) is irreducible in Q[z]. Any non-trivial factorization
would have a linear factor, and hence a root in Q. The Rational
Root Test gives all possible candidates for such roots as r = +1,
but neither of these works, so there is no factorization.

Since p(x) is irreducible, the ideal (p(x)) € Q[z] is maximal: the
only larger ideal is all of Q[z]. Thus, if Ker(¢) D (p(z)) had any
elements other than p(x)q(x), it would be bigger than (p(x)) and
we would get Ker(¢) = Q|x], which is clealy false: for example
(1) =1 # 0. Therefore Ker(¢) = (p(x)).



(b) The Isomorphism Theorem states that if ¢ : R — S is a surjective
homomorphism, then we have an isomorphism S = R/Ker(¢).
In our case, ¢ : Q[z] — K is surjective, since every possible output
f(a) € K is hit by some input, namely the polynomial f(x) €
Q[z]. Therefore the Theorem guarantees:

Qz] _ Q] _ Qls]

B Ra@) = b))~ @ratl)

(c) Now that we know that K is a polynomial quotient ring, we can
compute in it by the same techniques as in #2 above, except that
the coefficients are in Q rather than Z,.



